
Journal of Animal Science, 2020, 1–13

doi:10.1093/jas/skaa049
Advance Access publication February 12, 2020
Received: 3 January 2020 and Accepted: 7 February 2020
Cell and Molecular Biology

Copyedited by: RS

1

© The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved.  
For permissions, please e-mail: journals.permissions@oup.com.

Cell and Molecular Biology

Water amino acid-chelated trace mineral 
supplementation decreases circulating and 
intestinal HSP70 and proinflammatory cytokine gene 
expression in heat-stressed broiler chickens 
Mikayla F. A. Baxter,1 Elizabeth S. Greene,1 Michael T. Kidd,  
Guillermo Tellez-Isaias, Sara Orlowski, and Sami Dridi2

Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701

1Equal participation in this work.

2Corresponding author: dridi@uark.edu

ORCiD number: 0000-0002-2416-2747 (G. Tellez-Isaias).

Abstract
Heat stress (HS) is a financial and physiological burden on the poultry industry and the mitigation of the adverse effects 
of HS is vital to poultry production sustainability. The purpose of this study was, therefore, to determine the effects of an 
amino acid-chelated trace mineral supplement on growth performance, stress and inflammatory markers, and meat quality 
in heat-stressed broilers. One day-old Cobb 500 male broilers (n = 480) were allocated into 12 environmental chambers 
(24 floor pens) and divided into two groups: one group supplemented with amino acid-chelated trace mineral in drinking 
water and one control group. On day 28, birds were subjected to chronic heat stress (HS, 2 wk, 35 °C and 20% to 30% RH) 
or maintained at thermoneutral condition (TN, 24 °C) in a 2 × 2 factorial design. Feed intake (FI), water consumption, and 
body weight were recorded. At day 42, serum fluorescein isothiocyanate dextran (FITC-D) levels, blood gas, electrolyte, and 
stress markers were measured.  Jejunum samples were collected to measure gene expression of stress, inflammation, and 
tight junction proteins. The rest of the birds were processed to evaluate carcass traits. HS resulted in an increase in core 
body temperature, which increased water intake and decreased FI, body weight, and feed efficiency (P < 0.05). HS reduced 
carcass yield and the weight of all parts (P < 0.05). HS significantly increased levels of circulating corticosterone (CORT), heat 
shock protein 70 (HSP70), interleukin 18 (IL-18), tumor necrosis factor alpha, C-reactive protein, and nucleotide-binding 
oligomerization domain leucine-rich repeat and pyrin domain-containing 3 expression. HS significantly increased serum 
FITC-D levels and the expression of HSP70 and IL-18 in the jejunum. Although it did not affect the growth performance, 
amino acid-chelated trace mineral supplementation reversed the effect of HS by reducing CORT and FITC-D levels and 
the expression of stress and proinflammatory cytokines in the circulation and the jejunum. However, it upregulated these 
parameters in birds maintained under TN conditions. Together, these data indicate that the amino acid-chelated trace 
mineral might alleviate stress and inflammation and improve gut integrity in heat-stressed but not thermoneutral broilers.
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Introduction
Heat stress (HS) is one of the most significant environmental 
stressors challenging poultry production worldwide (Lara and 
Rostagno, 2013; Greene et al., 2019b). Heat stress has adverse effects 
across all agricultural systems; however, poultry are particularly 
susceptible due to their high metabolic activity and heat 
production and decreased thermo-tolerance associated with their 
high growth rate (Deeb and Cahaner, 2002). Heat stress negatively 
impacts feed intake (FI), growth performance, meat yield, welfare, 
and mortality in the modern broilers. Globally, widespread extreme 
heat waves have repeatedly occurred and have caused great losses 
in the past. Based on a 2003 analysis, American animal agriculture 
loses an estimated US$1.69 to US$2.36 billion dollars annually due 
to HS, with poultry-specific losses ranging from US$128 to US$165 
million (St-Pierre et al., 2003). As these values are over a decade 
old, they are likely considerably less than the current economic 
burden of HS. Additionally, as global temperatures are predicted to 
increase over the coming decades (Stillman, 2019), these negative 
events are projected to have an even greater impact on animal 
health and performance, economic losses, and food security for a 
growing world population.

Current methodologies for alleviating HS in poultry are 
only partially effective, as productivity still declines during 
warmer seasons. Currently, research efforts are focused toward 
management and nutritional strategies to help poultry better 
withstand HS challenges and maintain broiler health and 
productivity. Trace mineral supplementation, in particular, is a 
potential approach due to the known function of these minerals 
in growth, the immune response, and for their antioxidant 
characteristics (Richards et  al., 2010; Światkiewicz et  al., 2014). 
Birds are also likely mineral-deficient during HS, due to decreased 
intake and increased excretion (Belay and Teeter, 1996), as well 
as changes in metabolism affecting requirements (Coelho and 
McNaughton, 1995). Compared with inorganic, organic minerals, 
particularly amino acid-chelated minerals, are more bioavailable 
to the animal and prevent potential antagonism between other 
minerals and nutrients (Światkiewicz et al., 2014). Additionally, 

organic minerals have been reported to improve the antioxidant 
system and immune response and disease resistance, and 
reduce mortality (Kidd et  al., 1996; Downs et  al., 2000; Ferket 
et  al., 2009). As HS is well known to induce oxidative stress 
and immunosuppression and reduce well-being and growth 
performances in broilers, we hypothesized that organic mineral 
supplementation may alleviate the adverse effect of HS. We, 
therefore, undertook the present study to determine the effect 
of a commercially available amino acid-chelated mineral (Avalar, 
Tracer Minerals, Cimmaron, KS) supplementation on growth 
performances and on the expression of heat shock proteins 
(HSPs) and cytokines in gut and blood of heat-stressed broilers.

Materials and Methods
The present study was conducted in accordance with the 
recommendations in the guide for the care and use of laboratory 
animals of the National Institutes of Health and the protocols 
were approved by the University of Arkansas Institutional 
Animal Care and Use Committee under protocol # 16084.

Animal procedure and environment

Four hundred eighty day-old Cobb500 broiler chicks were 
obtained from Cobb-Vantress hatchery (Siloam Springs, AR) 
and housed in environmentally controlled chambers in the 
Poultry Environmental Research Laboratory at the University of 
Arkansas. Each environmental chamber was divided into two 
pens with separate feeders and water containers (12 chambers, 
24 pens, 20 birds/pen) where temperature, relative humidity 
(RH), and photoperiod can be managed accurately. On the day 
of hatch, chicks were individually weighed and tagged and kept 
at a density of approximately 0.15 m2/bird in all pens. Diets 
were formulated to meet Cobb-Vantress requirements (Table 1) 
and were fed ab libitum. An amino acid-chelated mineral 
supplement (Avalar, Tracer Minerals, Cimmaron, KS) was added 
in drinking water at the manufacturer’s recommended dose 
(Table 2). The ambient temperature was reduced gradually from 
32 °C on day 1 to 24 °C on day 21, with RH at 55 ± 5%. On day 
28, chambers were randomly divided into two environmental 
conditions (thermoneutral [TN], 24  °C vs. HS, 35  °C) and pens 
were assigned a treatment (Control, C vs. Avalar amino acid-
chelated mineral treatment, M) in a 2 × 2 factorial design. The 
day prior to HS challenge, the chickens (12 birds/group) were 
equipped with a Thermochron temperature logger (iButton, 
DS1922L, Maxim, CA) for continuous monitoring of the core 
body temperature. Environmental temperature and RH were 
recorded daily in each chamber. Feed and water intake were 
recorded daily for each pen. Mortalities were recorded daily 
and FI (individual and cumulative) was adjusted for any losses. 
Bodyweight was recorded weekly, and body weight gain, feed 
conversion ratio (FCR), and feed efficiency were determined as 
previously described (Rajaei-Sharifabadi et al., 2017).

Sample collection

Selected birds were euthanized by cervical dislocation after 
chronic (2 wk) HS. For RNA analysis, blood samples (1 mL) were 
collected from wing vein into sterile tubes containing Trizol-LS 
reagent (Thermo Fisher Scientific, Waltham, MA). For plasma, 
blood samples (2.5 to 3.5 mL) were collected in vacutainer tubes 
with plasma separation tube gel and lithium heparin and after 
centrifugation (1,500 × g, 10 min, 4 °C), plasma was separated and 
stored at −20 °C for later analysis. Blood chemistry was analyzed 
using a portable analyzer (i-STAT Alinity, Abbott Laboratories, 

Abbreviations

BE base excess
BW body weight
CLDN1 claudin 1
CORT corticosterone
CRP C-reactive protein
FCR feed conversion ratio
FI feed intake
FITC Fluorescein Isothiocyanate
GLM general linear model
Hb hemoglobin
HS heat stress
HSP heat shock protein
IL interleukin
NLRP3 nucleotide-binding oligomerization 

domain leucine-rich repeat and pyrin 
domain containing 3

OCLN occluding
PCR polymerase chain reaction
RH relative humidity
SNK Student Newman Keuls
TN thermoneutral
TNFα tumor necrosis factor alpha
WB woody breast
WI water intake
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USA; cartridge Cg8+). Blood is introduced into the cartridge 
by using a syringe, and the cartridge is then inserted into the 
analyzer, and operator and animal identification were entered 
into the system. A detailed technical description and use of iSTAT 
has been described elsewhere (Erickson and Wilding, 1993). iSTAT 
analysis has been validated in chickens (Steinmetz et al., 2007; 
Martin et al., 2010; Wang et al., 2018; Greene et al., 2019a). The 
following parameters were measured: hematocrit (Hct, % packed 
cell volume), hemoglobin (Hb, g/dL), pH, partial pressure carbon 
dioxide (pCO2, mmHg), partial pressure oxygen (pO2, mmHg), base 
excess (BE, ecf, mmol/L), total carbon dioxide (TCO2, mmol/L), 
oxygen saturation (sO2, %), sodium (Na+, mmol/L), potassium 
(K+, mmol/L), ionized calcium (iCa, mmol/L), bicarbonate (HCO3

−, 
mmol/L), and glucose (mg/dL). Blood samples were collected 
to assess the gene expression of cytokines (interleukin [IL]-18, 
IL-1β, nucleotide-binding oligomerization domain leucine-
rich repeat and pyrin domain containing 3 [NLRP3], and tumor 
necrosis factor alpha [TNFα], and C-reactive protein [CRP]) and 

stress markers (HSP60 and HSP70) and corticosterone (CORT). 
To assess the expression of HSPs, tight junction proteins, and 
cytokines, the upper jejunum (approximately 10 cm below bile 
duct entrance into distal duodenum) was collected, cleaned of 
digesta by gently pressing the tissue, and rinsed in phosphate-
buffered saline solution. Once collected, blood and tissue 
samples were snap-frozen in liquid nitrogen and stored at −80 °C 
until use for molecular and biochemical analysis.

Corticosterone radioimmunoassay

Plasma CORT levels were determined by radioimmunoassay as 
previously described (Madison et  al., 2008). All samples were 
assayed in duplicate. The inter- and intra-assay coefficient of 
variation were lower than 5%.

RNA isolation, reverse transcription, and quantitative 
real-time polymerase chain reaction (PCR)

Total RNA was isolated from blood and jejunal samples using 
Trizol reagent (Thermo Fisher Scientific, Rockford, IL) following 
manufacturer’s recommendations. RNA concentrations and purity 
were measured in duplicate for each sample using the Take 3 Micro-
Volume Plate and the Synergy HT multimode microplate reader 
(BioTek, Winooski, VT). RNA integrity and quality were further verified 
using 1% agarose gel electrophoresis. qScript cDNA synthesis kit 
(Quanta Biosciences, Gaithersburg, MD) was used to transcribe 1 µg 
of RNA into cDNA. Real-time quantitative PCR (Applied Biosystems 
7500 Real-Time PCR system) was performed by mixing 5 µL of 10× 
diluted cDNA, 0.5 µM of each forward and reverse specific primer, 
and SYBR Green Master Mix (Thermo Fisher Scientific, Rockford, 
IL) in a total volume of 20 µL per reaction. Oligonucleotides primers 
specific for chicken IL-1β, IL-18, NLRP3, CRP, TNFα, HSP60, HSP70, and 
the housekeeping gene, ribosomal 18S, are summarized in Table 3. 
The qPCR cycling conditions were the same as described previously 
(Lassiter et  al., 2015). Relative expression of target genes was 
determined by the 2−ΔΔCt method (Schmittgen and Livak, 2008) and 
the control treatment under TN conditions was used as calibrator.

Intestinal permeability

Paracellular gut leakage was measured using the fluorescent marker 
flouresisothyiocynate-dextran (FITC-D) as previously described 
(Baxter et  al., 2019). In brief, the dose of FITC-D was calculated 
based on the average pen body weight. Chickens were gavaged with 

Table 1. Ingredient and nutrient composition of the basal diet 

Starter  
0 to 14 d

Grower  
15 to 42 d

Ingredient, % of diet
 Corn 60.099 65.070
 Soybean meal, 46% 33.381 28.286
 Poultry fat 2.473 2.821
 Dicalcium phosphate 1.610 1.481
 Limestone 1.015 0.981
 Salt 0.355 0.359
 Sodium bicarbonate 0.120 0.120
 DL-methionine 0.330 0.285
 l-lysine HCl 0.244 0.233
 l-threonine 0.102 0.096
 Choline chloride, 60% 0.031 0.029
 Vitamin premix1 0.100 0.100
 Trace mineral premix2 0.100 0.100
 Selenium premix3 0.020 0.020
 Santoquin 0.020 0.020
Calculated composition, %
 Dry matter 88.12 87.99
 ME, kcal/kg 3,035 3,108
 CP 21.20 19.10
 AID Lys 1.18 1.05
 AID Met 0.61 0.54
 AID TSAA 0.89 0.80
 AID Thr 0.77 0.69
 AID Trp 0.22 0.19
 AID Arg 1.27 1.12
 AID Ile 0.79 0.71
 AID Val 0.86 0.78
 Total ca 0.90 0.84
 Total P 0.71 0.66
 Available P 0.45 0.42
Analyzed nutrient
 Crude protein, % 21.5 21.1
 Energy, Kcal/kg 4,061 4,046
 Fat, % 5.51 5.26

1Supplied per kilogram of diet: manganese, 100 mg; magnesium, 
27 mg; zinc, 100 mg; iron, 50 mg; copper, 10 mg; iodine, 1 mg.
2Supplied per kilogram of diet: vitamin A, 30,863 IU; vitamin D3, 
22,045 ICU; vitamin E, 220 IU; vitamin B12, 0.05 mg; menadione, 
6.0 mg; riboflavin, 26 mg; d-pantothenic acid, 40 mg; thiamine, 
6.2 mg; niacin, 154 mg; pyridoxine, 11 mg; folic acid, 3.5 mg; biotin, 
0.33 mg.
3Supplied 0.12 mg of selenium per kg of diet.

Table 2. Composition and dosing schedule for the amino acid-
chelated trace mineral

Composition1 Treatment2

Mineral Quantity Day Dose (mL/L)

Zn 1,800 ppm 1 to 6 9.8
Mn 530 ppm 10 to 12 7.8
Fe 330 ppm 17 to 19 7.8
Cu 130 ppm 24 to 26 7.8
Co 18 ppm 31 to 32 7.8
Mg 0.6% 38 to 39 7.8
K 0.5%   
Ca 0.075%   

1The product is in accordance with AAFCO 57.142 Metal Amino 
Acid Chelate and AAFCO 57.150 Metal Amino Acid Complex (for the 
potassium).
2Dose (in drinking water) and timing based on the manufacturer’s 
recommendation. Control groups received un-supplemented water 
for the duration of the experiment. Ca, calcium; Co, cobalt; Cu, copper; 
Fe, iron; K, potassium; Mg, magnesium; Mn, manganese; Zn, zinc.
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FITC-D (8.32 mg/kg of body weight) and blood was collected l h post 
gavage. Fluorescence was measured at an excitation wavelength of 
428 nm and an emission wavelength of 528 nm using the Synergy 
HT multimode microplate reader (BioTek, Winooski, VT).

Processing and woody breast scoring

At the end of the trial (day 42), the remaining birds were processed 
at the University of Arkansas Pilot Processing Plant (Fayetteville, 
AR) using a commercial inline system, and carcass quality 
traits including live weight, hot and chilled carcass weight, fat, 
breast, tender, wing, and leg quarter weights were determined 
as previously described (Orlowski et  al., 2018). Whole breast 
fillets were evaluated for degree of hardness (woody breast [WB]) 
based on tactile evaluation using the scale developed by Tijare 
et al. (2016) with categories of normal (NORM), moderate (MOD), 
and severe (SEV).

Statistical analysis

All data are expressed as mean ± SEM. Data were analyzed by 
two-way ANOVA using general linear model (GLM) procedures 
of SAS (v9.4Cary, NC) or GraphPad Prism version 6.0 (La Jolla, CA). 
The main effects were mineral supplementation (Control vs. 
Avalar), ambient temperature (TN vs. HS), and their interaction. 
When ANOVA showed a significant effect, means were compared 
by Student Newman Keuls (SNK) multiple comparison test. P < 
0.05 was considered significant. WB scores were considered an 
ordinal variable and means between groups were separated using 
Pearson’s Chi-square. Differences between the frequency of each 
score were also determined using Proc GLM in SAS, with Diet and 
Temp as fixed effects. Means were separated using the least square 
means (LSMEANS) procedure, and significance set at P < 0.05.

Results

Growth performance and carcass characteristics

Before HS initiation, the environment temperature and RH did 
not differ among the environmental chambers. After the onset 

of HS, the environmental temperature was significantly higher 
and RH was significantly lower in the HS as compared with the 
TN chambers (Figure 1a and b). Core body temperature in the HS 
groups was ~1 to 1.5 °C higher than the control groups.

FI between control and amino acid-chelated trace mineral-
supplemented group did not differ prior to the onset of HS. After 
HS initiation, however, individual FI was significantly lower in 
the HS pens as compared with TN. There were no significant 
differences in FI between the control and the amino acid-
chelated trace mineral groups, regardless of environmental 
temperature (Figure  2a and b). However, under HS, the amino 
acid-chelated trace mineral group had higher FI compared with 
the control group (4,199.4 g ± 110 vs. 4,061.14 g ± 75.9, P = 0.2). 
Before HS initiation, there was no significant difference in 
water intake between any of the treatment groups. After HS, 
water intake was significantly higher in chickens in the HS 
chambers. Regardless of environmental conditions, there was 
no significant effect of the amino acid-chelated trace mineral 
supplementation on water intake (Figure 2c and d).

Before HS, all treatment groups had similar average body 
weight and initial body weight gains (Figure  2e). Chickens 
under TN conditions had a higher body weight and higher body 
weight gain from day 35 to day 42 than HS chickens (Figure 2e). 
Regardless of the environmental challenge, there was no 
significant difference in growth between the control and the 
amino acid-chelated trace mineral-supplemented chickens. 
HS increased FCR in both control and amino acid-chelated 
trace mineral groups, and amino acid-chelated trace mineral 
supplementation averaged 4 points better FCR compared with 
control diets under both environmental conditions (1.57  ± 
0.01 vs. 1.53 ± 0.01 and 1.66 ± 0.01 vs. 1.62 ± 0.01 in control vs. 
amino acid-chelated trace mineral under TN and HS conditions, 
respectively; P < 0.0001 for the effects of diet and environmental; 
P > 0.99 for the interaction).

The effects of HS and amino acid-chelated trace mineral 
supplementation on processing data are shown in Table 4. HS 
caused a significant reduction in live weight, carcass weight 
(pre and post chill), wing, breast, tender, and leg quarter weight. 

Table 3. Oligonucleotide real-time qPCR primers

Gene Accession number1 Primer sequence (5′ → 3′) Orientation Product size (bp)

IL-1β  NM_204524  CGAGGAGCAGGGACTTTGC GAAGGTGACGGGCTCAAAAA Forward  
Reverse

71  

IL-18  GU119895  TGCAGCTCCAAGGCTTTTAAG CTCAAAGGCCAAGAACATTCCT Forward  
Reverse

63  

TNFα  NM_204267  CGTTTGGGAGTGGGCTTTAA GCTGATGGCAGAGGCAGAA Forward  
Reverse

61  

NLRP3  XM_001233261  GTTGGGCAGTTTCACAGGAATAG GCCGCCTGGTCATACAGTGT Forward  
Reverse

63  

CRP  NM_001039564  AAGCTCAGGACAACGAGATCCT TTTCCCCCCCACGTAGAAG Forward  
Reverse

71  

HSP60  NM_001012916  CGCAGACATGCTCCGTTTG TCTGGACACCGGCCTGAT Forward  
Reverse

55  

HSP70  J02579  GGGAGAGGGTTGGGCTAGAG TTGCCTCCTGCCCAATCA Forward  
Reverse

55  

OCLN  NM_205128  CGCAGATGTCCAGCGGTTA GTAGGCCTGGCTGCACATG Forward  
Reverse

59  

CLDN1  NM_001013611  CCCACGTTTTCCCCTGAAA  
GCCAGCCTCACCAGTGTTG

Forward  
Reverse

61  

18S AF173612 TCCCCTCCCGTTACTTGGAT  
GCGCTCGTCGGCATGTA

Forward  
Reverse

60

1Accession number refers to Genbank (NCBI). CLDN1, claudin 1; CRP, C-reactive protein; HSP, heat shock protein; IL, interleukin; NLRP3, 
nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain containing 3; OCLN, occluding; TNFα, tumor necrosis factor 
alpha.
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Under TN conditions, control chickens had a WB incidence of 
6.78% normal, 62.71% moderate, and 30.51% severe. Control 
chickens under HS conditions had an incidence of 8.33% normal 
breast, 86.67% moderate, and 5.00% severe. With amino acid-
chelated trace mineral supplementation under TN conditions, 
5.00% of breasts were scored as normal, 68.33% as moderate, 
and 26.67% as severe. With amino acid chelated trace mineral 
treatment under HS conditions, 3.33% of the fillets were normal, 
88.33% were moderate, and 8.33% were scored as severe for WB 
(Figure 3, Table 5).

Circulating stress markers

Amino acid-chelated trace mineral supplementation reduces 
circulating CORT levels by 34% and 12% compared with the 
control group under both TN and chronic HS conditions (186 ± 33 
vs. 123.4 ± 10 pg/mL and 325.1 ± 39 vs. 286 ± 33 pg/mL in control 
vs. amino acid-chelated trace mineral-supplemented group 
under TN and HS conditions, respectively; P  =  0.03, P  =  0.43, 
and P  =  0.85 for the effect of HS, amino acid-chelated trace 
mineral, and their interaction, respectively). Similarly, amino 
acid-chelated trace mineral supplementation significantly 

downregulates the expression of blood HSP70, IL-18, TNFα, 
and NLRP3 under chronic HS conditions (Figure 4a, c, d, and f). 
However, blood HSP60 mRNA levels were significantly increased, 
and CRP levels remained unchanged in amino acid-chelated 
trace mineral-supplemented and heat-stressed birds compared 
with control (Figure 4b and e). Under TN conditions, amino acid-
chelated trace mineral administration significantly upregulates 
the expression of blood HSP70, IL-18, TNFα, CRP, and NLRP3 
without affecting that of HSP60 compared with the untreated 
group (Figure 4a–f).

Intestinal integrity and stress markers

Chronic HS significantly increases serum FITC-D levels 
compared with TN conditions and amino acid-chelated trace 
mineral supplementation significantly reduces serum FITC-D 
concentrations compared with the control group under HS 
conditions (Figure  5a). As for the blood, amino acid-chelated 
trace mineral supplementation significantly downregulates 
the expression of HSP70 in the jejunum compared with the 
control group under chronic HS conditions (Figure  5b). Amino 
acid-chelated trace mineral supplementation significantly 

Figure 1. Effect of amino acid-chelated trace mineral supplementation on core body temperature of heat-stressed broilers. The chamber temperatures (a), relative 

humidity (b), and the core body temperature (c) were monitored. Data are presented as mean ± SEM (n = 12 birds/group). *indicates significant difference at P < 0.05. C, 

control; HS, heat stress; M, mineral supplementation; RH, relative humidity; T, barn temperature; TN, thermoneutral. 
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upregulates the expression of claudin 1 (CLDN1), but not that 
of occluding (OCLN), in the jejunum compared with the control 
group under HS conditions (Figure 5e and f).

Blood gasses and electrolytes

Hb levels were significantly increased by HS but were unaffected 
by amino acid-chelated trace mineral supplementation 
(Table 6). The levels of pCO2 were significantly increased by HS 
only in the amino acid-chelated trace mineral-supplemented 
group and not in the control birds (Table  6). There was a 
significant interaction between HS and mineral treatment on 
HCO3, BE, and total CO2.

Discussion
HS is a global issue affecting the performance and welfare 
of animals in the agricultural industry. Currently, there is 
no consensus or published guideline for poultry mineral 
requirements during HS, where birds consume less feed, have 
poorer digestibility, and greater excretion of dietary minerals 
(Hai et al., 2000) making these dietary components a hot spot 
and critical target for research. In this study, as expected, and 
in agreement with previously published research (Leenstra 
and Cahaner, 1992; Gonzalez-Esquerra and Leeson, 2005; Flees 
et al., 2017), exposure to HS decreased FI and body weight (BW) 

Figure 2. Effect of amino acid-chelated trace mineral supplementation on growth performance in heat-stressed broilers. Individual and cumulative FI (a, b), individual 

and cumulative water intake (WI) (c, d), and body weight and body weight gain (e). Data are presented as mean ± SEM (n = 120 birds/group for body weight and n = 6 

pens/group for FI and WI). *indicates significant difference at P < 0.05. 
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gains and increased water intake relative to TN conditions. 
The lack of a difference between water consumption in the 
control and amino acid-chelated trace mineral groups indicates 
that amino acid-chelated trace mineral supplementation 
did not affect palatability or birds’ ability to drink. These 
data support the feasibility of drinking water-mineral as an 
effective delivery method. Others have shown that birds may 

refuse mineral-supplemented feed, but only at excessive 
concentrations (Ferket and Gernat, 2006). The increase (~138 g/
bird/42 d) in FI in the amino acid-chelated trace mineral group as 
compared with the control birds under HS conditions suggests 
that amino acid-chelated mineral supplementation may help 
stimulate appetite and FI. This stimulatory effect of specific 
trace minerals on FI has been observed previously. For instance, 
supplementation with organic iron or iron in combination with 
copper resulted in a significant increase in FI with no effect on 
body weight in broilers, whereas supplementation with zinc 
resulted in increases in both FI and body weight gains (Bao 
et al., 2010). Conversely, lower FI in broilers has been reported 
to be a consequence of trace mineral deficiencies (Bao et  al., 
2007). This suggests that the combination of minerals in amino 
acid-chelated trace mineral might stimulate appetite through 
orexigenic peptides coupled to the afferent vagus nerve 
(Marreiro et  al., 2006; Akarsu et  al., 2007; Suzuki et  al., 2011; 
Nishiuchi et al., 2018). The slightly higher core body temperature 
(~0.5  °C) observed during HS in the amino acid-chelated trace 

Table 4. The effects of HS and amino acid-chelated mineral supplementation on carcass parameters of broilers1

Diet Control Avalar P-values

Environment TN HS TN HS Diet (D) Environment (E) Interaction (D × E)

LW, g 2,974.7 ± 171.5 2,444.9 ± 136.5 3,010.8 ± 132.8 2,526.0 ± 104.5 0.677 0.002 0.872
HCW, g 2,304.1 ± 145.1 1,913.3 ± 109.5 2,318.1 ± 113.8 1,950.1 ± 84.6 0.828 0.004 0.922
CCW, g 2,368.6 ± 148.7 1,965.8 ± 109.9 2,383.8 ± 114.6 2,004.5 ± 85.4 0.820 0.003 0.921
Fat, % 1.38 ± 0.16 1.42 ± 0.14 1.48 ± 0.15 1.41 ± 0.16 0.573 0.934 0.418
Breast, g 599.8 ± 16.4 480.0 ± 11.4 608.4 ± 13.9 487.5 ± 9.8 0.848 0.009 0.989
Breast, % 25.13 ± 0.29 24.30 ± 0.23 25.39 ± 0.26 25.24 ± 0.24 0.432 <0.0001 0.121
Tender, g 118.29 ± 7.54 100.82 ± 6.70 120.62 ± 6.95 101.60 ± 6.22 0.823 0.015 0.912
Wing, g 235.14 ± 13.02 204.67 ± 9.97 235.97 ± 10.74 207.40 ± 7.80 0.868 0.011 0.929
Leg quarter, g 702.98 ± 43.42 586.37 ± 34.53 706.28 ± 31.57 602.30 ± 26.48 0.857 0.005 0.784

1Data are means ± SEM. LW, live weight, HCW: Hot carcass weight, CCW: chilled carcass weight. 

Figure 3. Effect of amino acid-chelated trace mineral supplementation on WB incidence. At day 42, breast filets were macroscopically scored and classified to WB 

categories to normal (NORM, score 0), moderate (MOD, score 0.5 to 1.5), and severe (SEV, score 2 to 3). n = 59 to 60 breast fillets/group.

Table 5. Effect of amino acid-chelated mineral supplement and heat 
stress on WB categories1

WB category Diet Temp. Diet × Temp.

Normal 0.2377 1.0000 0.5497
Moderate 0.5497 0.0101 0.6893
Severe 1.0000 0.0110 0.6708

1Values represent P-values as determined using Proc GLM and 
LSMEANS procedure of SAS.

D
ow

nloaded from
 https://academ

ic.oup.com
/jas/article-abstract/98/3/skaa049/5734523 by ASAS M

em
ber Access user on 19 M

arch 2020



8 | Journal of Animal Science, 2020, Vol. 98, No. 3

Copyedited by: RS

mineral-supplemented birds may also be due to the diet-
induced thermogenesis and/or higher metabolic function 
associated with the increase in FI. Regardless of environmental 
conditions, amino acid-chelated trace mineral treatment had no 
significant effect on BW, BW gain, or FCR. Overall, the reported 
effects of mineral supplementation during HS in the literature 
are inconsistent, with some showing no changes (Bartlett 
and Smith, 2003; Pacheco et  al., 2017) and others increasing 
performance parameters (Kucuk et  al., 2003; Sahin et  al., 
2005; Laganá et al., 2007; Kucuk 2008; Yang et al., 2012). These 
discrepancies may be due to the use of varying sources, doses, 
and forms of mineral, as well as differences in supplementation 
timing and differences in the mineral content of the basal diets.

At the cellular level, a small increase in temperature 
induces alterations such as protein misfolding and aggregation, 
transcription modulation, and cell cycle arrest (Richter et  al., 

2010). Many of the observed effects of HS can be attributed to the 
aggregation of intracellular proteins and an overall imbalance 
of protein homeostasis. To prevent these deleterious effects, the 
cell has a coordinated and highly conserved response system. 
Depending on the severity and duration of the stress, cells 
can utilize highly efficient stress response and protein quality 
control systems to ensure their survival or activate stress 
signaling cascades that result in cell-death pathways (Santoro, 
2000). At the molecular level, a common rapid response to HS 
is the increased synthesis of HSPs. Here, in concurrence with 
other research, HSP70 gene expression was upregulated during 
HS in the circulation and in the jejunum of control birds 
(Varasteh et  al., 2015; Rajkumar et  al., 2018; Xu et  al., 2018; 
Greene et al., 2019b), indicating a systemic and local (intestinal) 
stress status. Interestingly, amino acid-chelated trace mineral 
supplementation reverses this effect, suggesting a mitigation 

Figure 4. Effect of amino acid-chelated trace mineral supplementation on circulating stress and inflammatory markers. The relative gene expression of HSP70 (a), 

HSP60 (b), IL-18 (c), TNFα (d), CRP (e), and NLRP3 (f) was determined by qPCR and analyzed by 2–ΔΔCt method using C-TN group as a calibrator. Data are presented as mean 

± SEM (n = 6 to 10 birds per group). Different letters indicate significant difference at P < 0.05. C, control; CRP, C-reactive protein; HSP, heat shock protein; IL, interleukin; 

M, mineral (Avalar); NLRP3, nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain containing 3; TNFα, tumor necrosis factor alpha.
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of stress induced by heat load. The anti-stress effects of the 
amino acid-chelated trace mineral are further supported by the 
reduction of plasma CORT (the gold standard stress marker) 
levels in heat-stressed broilers (Quinteiro-Filho et  al., 2010; 
Xu et al., 2018). A similar effect on HSP70 expression has been 
shown with individual supplementation with specific minerals, 
including zinc (Kucuk et al., 2003; Sahin et al., 2005; Rajkumar 
et al., 2018), and manganese (Zhu et al., 2015), both of which are 
components of the amino acid-chelated trace mineral.

The circulatory system and the gastrointestinal tract are 
primarily responsive to heat stress and a variety of changes 
can be observed, including inflammation and impairment of 
intestinal barrier integrity (Lambert et  al., 2002; Pockley, 2002; 
Song et al., 2014; Li et al., 2019b; Koch et al., 2019). This is evident 
here following the induction of proinflammatory cytokines (IL-
18, TNFα, CRP, and NLRP3) in the circulation and IL-18 in the 
jejunum of heat-stressed birds, which corroborates previous 

studies (Welc et al., 2013; Ohtsu et al., 2015; Saleh and Al-Zghoul, 
2019). The NLRP3 is an intracellular sensor that detects a 
broad range of endogenous danger signals and environmental 
irritants, resulting in the assembly and activation of the 
NLRP3 inflammasome and caspase 1-dependent release of the 
proinflammatory cytokines IL-1β and IL-18 (Martinon et al., 2002; 
Duncan et al., 2007; Mangan et al., 2018). Although the upstream 
mediators of NLRP3 inflammasome activation are not known in 
this study, it is possible that HS induces TNF-α which leads to 
NF-kB activation and NLRP3 transcription (Bauernfeind et  al., 
2009; Franchi et  al., 2009). It is also plausible that HS induces 
NLRP3 activation via CRP-upregulating NF-kB activity (Bello 
et  al., 2016; Bian et  al., 2019). In addition to stress alleviation, 
the downregulation of proinflammatory cytokine expression 
indicates that the amino acid-chelated trace mineral may 
reduce inflammation in heat-stressed broilers. In fact, minerals 
are crucial components of enzymes necessary for antioxidant 

Figure 5. Effect of amino acid-chelated trace mineral supplementation on serum FITC-D concentrations and on intestinal stress and inflammatory markers. Intestinal 

permeability was assessed by measuring serum FITC-D levels (a). The relative gene expression of HSP70 (b), IL-18 (c), IL-1β (d), OCLN (e), and CLDN1 (f) was determined 

by qPCR and analyzed by 2–ΔΔCt method using C–TN group as a calibrator. Data are presented as mean ± SEM (n = 6 to 10 birds/group). Different letters indicate significant 

difference at P < 0.05. C, control; CLDN1, claudin 1; FITC, fluorescein isothiocyanate; HSP, heat shock protein; IL, interleukin; M, mineral (Avalar); OCLN, occludin.
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function, and dietary iron (Sun et  al., 2015), zinc (Bun et  al., 
2011), magnesium (Yang et al., 2006, 2012), copper (Dameron and 
Harris, 1987; Ognik et al., 2018), and manganese (Lu et al., 2007; 
Li et al., 2011; Zhu et al., 2015) have all been shown to improve 
antioxidant function and reduce inflammation in poultry.

It is well known that heat stress and proinflammatory 
cytokines induce leaky gut syndrome via disruption of the 
intestinal barrier integrity (Lambert et  al., 2002; Dann et  al., 
2008), which is obvious here due to the increase of serum FITC-D 
levels in heat-stressed birds. The upregulation of CLDN1 gene 
expression in the jejunum of heat-stressed broilers indicates 
a protective role of the amino acid-chelated trace mineral. 
CLDN1 is widely expressed in the intestinal epithelium and it 
is known by its barrier-forming ability (Günzel and Yu, 2013). 
It has been reported that the upregulation of CLDN1 increases 
transepithelial electrical resistance and maintain intestinal 
barrier integrity (Luissint et al., 2016; Wu et al., 2018; Li et al., 
2019a; Nishii et al., 2019). Taken together, amino acid-chelated 
trace mineral supplementation seems to reduce systemic 
and local (intestinal) stress and inflammation, and, in turn, 
improves intestinal barrier integrity in heat-stressed broilers. 
However and unexpectedly, amino acid-chelated trace mineral 
also upregulates the expression of HSP70 and proinflammatory 
cytokines in chickens maintained under TN conditions. This 
may be due to trace mineral levels in excess of requirements 
from the combined diet and water supplementation, as diets 
and water were not adjusted for the mineral content of amino 
acid-chelated trace mineral. Therefore, perhaps excessive 
mineral intakes lead to the production of proinflammatory 
cytokines (Kogut, 2017).

As WB is associated with oxidative stress and because 
minerals are recommended as cofactors and external 
antioxidants in the management of oxidative stress (Willcox 
et al., 2004; Wolonciej et al., 2016), we sought, next, to determine 
the effects of the amino acid-chelated trace mineral on WB 
incidence. WB is a muscle myopathy, characterized by palpable 
stiffness of the breast muscle and a myodegeneration within 
the fillet (Petracci and Cavani, 2012). It can cause significant 
economic losses to the industry, due to changes in meat texture, 
protein content, and water-holding capacity, and ultimately, 
consumer acceptance (Kuttappan et al., 2012, 2017). The heavy 

selection for growth in broiler chickens has increased muscle 
fiber diameter, reducing vascularization in the muscles, which 
concurrently reduces nutrient supply to the breast muscle and 
increases oxidative stress (Velleman and Clark, 2015). Here, 
HS reduced the severity of WB and this is not surprising due 
to a decrease in FI and body weight. Amino acid-chelated trace 
mineral supplementation led to a ~3.8% reduction and ~3.8% 
increase in the incidence of severe WB in birds maintained under 
TN and HS conditions, respectively. This result is intriguing, 
and due to the complexity of WB myopathy and current lack of 
understanding of its etiology, other research on the effects of 
dietary trace minerals are needed. Sirri et al. (2016) used high 
and low doses of an organic trace mineral mix and found no 
effect on the incidence of WB at 51 d of age. Echeverry et  al. 
(2016), on the other hand, have shown that supplementation 
with zinc resulted in increased zinc status in the breast muscle, 
improving oxidative stability; however meat quality was not 
assessed ().

When exposed to higher temperatures, chicken use multiple 
physiological mechanisms to thermoregulate, including 
decreased feeding and moving, as well as increased drinking 
behavior, laying, spreading of wings, and panting. Panting 
is considered the most obvious sign of HS and can lead to 
respiratory alkalosis (Fedde, 1998). Here, we show an interaction 
of mineral supplementation and HS on several parameters 
related to respiratory alkalosis. In particular, TCO2, BE, and HCO3− 
were lower under TN conditions, but higher with amino acid-
chelated trace mineral supplementation during HS. Though not 
measured, this may indicate that the mineral supplement may 
mitigate the effects of HS through decreased panting, leading to 
a more stable acid–base balance in the blood. Indeed, Wang et al. 
(2018) have shown TCO2 and HCO3− to be higher under HS in 
thermo-resistant (Fayoumi) as compared to sensitive (Leghorn) 
chicken lines and suggest these measures as potential selection 
markers for thermo-tolerance.

In summary, the beneficial effects of amino acid-chelated 
trace mineral supplementation seem to be environment-
dependent. It is protective as it reduces circulating and intestinal 
stress and inflammation in heat-stressed birds; however, 
it increases the expression of stress and proinflammatory 
cytokines in birds maintained under TN conditions. These data 

Table 6. Effect of chronic HS and amino acid-chelated trace mineral supplementation on blood parameters in chicken1

Diet  Control  Avalar P-values

Environment TN HS TN HS Diet (D) Environment (E) Interaction (D × E)

pH 7.49 ± 0.053 7.47 ± 0.062 7.48 ± 0.056 7.44 ± 0.073 0.318 0.142 0.622
pCO2, mmHg 33.1 ± 6.2 33.2 ± 7.6 31.8 ± 5.3 40.5 ± 11.3 0.243 0.091 0.094
pO2, mmHg 71.4 ± 15.6 79.4 ± 13.9 77.0 ± 17.5 74.8 ± 17.8 0.925 0.580 0.326
HCO3, mmol/L 24.7 ± 3.3 23.2 ± 3.4 23.1 ± 2.1 26.3 ± 4.3 0.670 0.431 0.031
BE, mmol/L 2.5 ± 3.3 1.0 ± 3.1 0.8 ± 2.2 3.8 ± 4.3 0.599 0.474 0.037
sO2, % 89.9 ± 6.3 91.1 ± 4.8 91.6 ± 5.5 87.0 ± 8.6 0.560 0.410 0.163
TCO2, mmol/L 25.6 ± 3.5 23.9 ± 3.6 23.8 ± 2.2 27.4 ± 4.4 0.450 0.399 0.023
Na, mmol/L 146.1 ± 1.6 146.3 ± 2.1 146.7 ± 1.7 145.3 ± 1.8 0.729 0.302 0.171
K, mmol/L 4.7 ± 0.3 4.7 ± 0.3 4.6 ± 0.2 4.5 ± 0.2 0.122 0.629 0.189
iCa, mmol/L 1.19 ± 0.15 1.18 ± 0.16 1.23 ± 0.11 1.29 ± 0.11 0.088 0.496 0.373
Glucose, mg/dL 205.5 ± 28.4 199.9 ± 26.9 203.9 ± 19.7 223.9 ± 20.2 0.151 0.351 0.102
Hct, %PCV 18.7 ± 1.6 20.5 ± 3.4 19.1 ± 2.0 19.9 ± 2.0 0.916 0.105 0.505
Hb, g/dL 6.3 ± 0.6 7.1 ±1.0 6.5 ± 0.7 6.8 ± 0.7 0.689 0.046 0.351

1Data are means ± SEM. n = 10 per group. pCO2, partial pressure of carbon dioxide; pO2, partial pressure of oxygen; HCO3, bicarbonate; BE, base 
excess; sO2, oxygen saturation; TCO2, total carbon dioxide; Na, sodium; K, potassium; iCa, ionized calcium; Hct, hematocrit; Hb, hemoglobin; 
PCV, packed cell volume.
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open a new vista for further in-depth investigations to delineate 
the mode of amino acid-chelated trace mineral action and to 
define the mineral requirement of broilers under both TN and 
HS conditions.
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